VEGABOARD SDK RISCV

QUICK GUIDE

y ‘ SECURE CONNECTIONS ‘

N
PUBLIC A4\ FOR A SMARTER WORLD

VEGAboard SDK

Features
Architecture: Reference Software:
S = Single driver for each peripheral = Peripheral driver usage examples
Customer Application » Transactional APIs w/ optional DMA = Application demos
support for communication » FreeRTOS usage demos
eripherals)
Stacks / Board PP License:
! = BSD 3-clause for startup, drivers, USB
Middleware support Integrated RTOS: stack P
= FreeRTOS v9

= RTOS-native driver wrappers Toolchains:

: : = Eclipse IDE
RTOS Peripheral Drivers)
- Integrated Stacks and Middleware ~ * GCC w/ Cmake

» USB Host, Device and OTG

= BLE stack Quality

= Amazon Web Service IoT » Production-grade software

» QCA WiFi Stacks = MISRA 2004 compliance

= |wIP, FatFS = Checked with Coverity® static analysis
» Crypto acceleration plus wolfSSL tools

SD and eMMC card support

[£RTOS)| o

Open Source
Initiative

Get Software & Tools

- Linux/Mac SDK:
- rv32ml_sdk riscv_installer.sh

- Toolchain (Prebuilt GCC and OpenOCD for Linux)

- Toolchain_Linux.tar.gz

3 PUBLIC

h

P

https://open-isa.org/downloads/

rv32ml_SDK folder

<sdk root directory>

E devices SOC peripheral driver source code and toolchain support code
-E boards Demo source code and project files

-E rtos FreeRTOS support package

E middleware Third Party middleware source code

-E tools CMake supporting files

| RISCV RISCV supporting files

| ™ Getting Started with RV32M1 SDK RISCV.pdf Getting Started Tutorial

-E SW-Content-Register.txt Software Content Register File

‘E LA _OPT_NXP_Software_License.htm

LA _OPT_WOLFSSL_EVAL.htm License Files

rv32ml SDK demo applications

boards

\-ﬁ rv32ml_vega

i demo_apps out of box demos

-E driver_examples barematel examples for demo driver of various on-chip/on-board peripherals
E rtos_examples demos in freertos context

-E multicore_examples rpmsg-lite based multicore examples

-E usb_examples various usb examples

-E wireless_examples

\-E bluetooth bluetooth examples

—E rv32ml_ribcy.cfg ribScy OpenOCD config file

«E rv32ml_zero_riscy.cfg zero_riscy openOCD config file

STEP BY STEP
USING TERMINAL

Get software and tools

Download SDK and Toolchain

curl -L https://github.com/open-isa-org/open-isa.org/releases/download/1.0.0/rv32m1_sdk_riscv_installer.sh >
$HOME/rv32m1_sdk_riscv_installer.sh

curl -L https://github.com/open-isa-org/open-isa.org/releases/download/1.0.0/Toolchain_Linux.tar.gz > $HOME/Toolchain_Linux.tar.gz
Extract SDK

cd $SHOME

chmod +x rv32m1_sdk_riscv_installer.sh

Jrv32ml_sdk_riscv_installer.sh

Accept license

mkdir vega && cd vega

tar xf ../rv32m1_sdk riscv.tar.gz
Extract toolchain

cd $SHOME

mkdir toolchain && cd toolchain

tar xf ../Toolchain_Linux.tar.gz

tar xf riscv32-unknown-elf-gcc.tar.gz

rm riscv32-unknown-elf-gcc.tar.gz

tar xf openocd.tar.gz

rm openocd.tar.gz

Set environment variables

Set environment variables
export RV32M1 SDK_ DIR=$HOME/vega/rv32m1l_sdk_riscv
export PATH=$PATH:$HOME/toolchain
export RISCV32GCC_DIR=$HOME/toolchain/riscv32-unknown-elf-gcc
export PATH=$PATH:$RISCV32GCC_DIR/bin

Build & Run: From Terminal

Go to the demo application folder. le. hello_world:
cd $RV32M1_SDK_DIR/boards/rv32ml1_vega/demo_apps/hello_world/ri5cy/riscvgcc

Execute the script to build the application
Jbuild_ .sh

Flash the application using OpenOCD + GDB (Make sure the board is connected to PC and J-Link)
openocd -f SHOME/vega/rv32m1_sdk riscv/boards/rv32ml_vegal/rv32ml_ri5cy.cfg
Open another terminal session (don’t forget to configure the env variables) or Press Ctrl+z and ‘bg’
cd $RV32M1 SDK DIR/boards/rv32m1_vega/demo_apps/hello_world/ri5cy/riscvgcc/

riscv32-unknown-elf-gdb hello_world.elf
(gdb) target remote localhost:3333

(gdb) load

(gdb) monitor reset

(gdb) QUIt Y COMSE - Tera Term VT
Open a Serial Terminal to verify output. File Edit Setup Control Window
Settings: Baud-rate: , Data: , Parity: , Flow Control: : hello world.

Build & Run: From Eclipse

Your VM image should already have Eclipse installed and configured, if you don’t have it, please refer to
“Getting Started with RV32M1 SDK”, Chapter 4.

- Summary:
= Make sure GNU MCU Eclipse plug-in is installed with RISCV C/C++ Cross Tools selected
= Configure Global OpenOCD Path - /home/user/toolchain
= Configure Global RISC-V Toolchains Paths - /Thome/user/toolchain/riscv32-unknown-elf-gcc/bin

Open eclipse
- cd $HOME/eclipse
- .leclipse

Import an existing project. le, the hello_world path:
$HOME/vegal/rv32ml_sdk riscv/boards/rv32ml_vega/demo_apps/hello_world/ri5cy/riscveclipse

Click ‘OK’ and ‘Finish’

File Edit Source Refactor Navig

Click the “Hammer” to build your application 0 v B v € v O v

£ Projec 2|5 Conne = O

e -
Sk

LI bubble_ri5cy_rv2m1_vega

=

10

https://github.com/open-isa-rv32m1/rv32m1_sdk_riscv

Build & Run: From Eclipse (2)

- Go to Run -> Debug Configurations
- Select a debug configuration from ‘GDB OpenOCD Debugging’

HeEX B Name: | hello_world_ri5cy_rv32Zm1_vega debug openocd

type filter text B Main %% Debugger| & Startup| %~ Source| D Common|

[Elc/c++ Application

[Elc/c++ Attach to Application

[Elc/c++ Container Launcher

[Elc/c++ Postmortem Debugger

[Elc/c++ Remote Application debug/hello_world_ri5cy_rv3Zm1_vega.elf

Cii ¢/C++ Unit

[£]1GDB Hardware Debugging

[£]1GDB Jumper Debugging
+ [£]GDB OpenOCD Debugging Build Configuration: | Select Automatically

c]

[Elhello_world_ri5cy_rv32m1_vega release openocd

Project:
hello_world_ri5cy_rv32Zm1_vega

C/C++ Application:

Build (if required) before launching

Enable auto build

A licawnarkenara caktinac

Click on ‘Debug’
Click on ‘Resume’ or stop the debugger L

Open a serial terminal and verify the output

Y COMSE - Tera Term VT

File Edit Setup Control
hello world.

Window

11

Now it’s your turn!

loT Toolbox ABOUT

®
@
®

- Download NXP’s loT Toolbox application to your smartphone
The application is Available for Android and iOS.

@

=
@
|
F
a2
®

- Load the Bluetooth Low Energy Heart Rate Sensor application located at:

_‘
E
@ g
g 2
g E]
a a
s
‘m.
@m@
g
5
:

...Irv32m1_sdk_riscv/boards/rv32m1_vegal/wireless_examples/bluetooth/heart_rate sensor/freertos/riscy/

QPP Wireless UART

F2 M M
X
- It's recommended to use the Eclipse-based scenario but feel free to try any setup.
- Start the Heart Rate Sensor application, you should see the red LED blinking.
- Open the 10T Toolbox and select the Heart Rate app
- You should see your device being advertised
loT Toolbox . STOP I.. DISCONNECT SET PHY READ PHY
- Select your device to start a connection < nme N il
e, B mp 4
bpm
Sensor Location
Chest
Advertising Connected

12

Which one is my board?

- You may see many Advertisements from different boards around you, let’'s change the ADV NAME of your device to make
sure you are connecting to it.

- Open the file “wireless_examples\bluetooth\heart_rate sensor\freertos\app_config.c” in the heart_rate sensor demo.
- Inline 75, you will find the Advertising name .aData, modify this to identify your board.

Note: the length cannot be larger than 14 including the ending character (\0).
- Don’t forget to adapt the .length variable.

lel app_config.c 3 € LZ:J?;LMX C stop
70 .aData = (uint8 t #*)adDatal
- - RV32_MyADV123
71 g 00:60:37:E5:69:38
12 { ! Unbonded -52 dBm
73 .adType = gAdShortenedLocalName c,
742 // .length = 9,
5 7/ .aData = (uintB8 t*)"RV32 HRS"
76 .length = 14,
77 .aData = (uint8 t*)"RV32 MyADV123" //Max length: 14 characters including end character '\@
78 }
79 h
86

13

Reference

- Open-ISA.org
- Getting Started with RV32M1 SDK (RISCV)

14

https://github.com/open-isa-rv32m1/rv32m1_sdk_riscv

SECURE CONNECTIONS
FOR A SMARTER WORLD

