VEGAboard SDK

Features

Architecture:
- Single driver for each peripheral
- Transactional APIs w/ optional DMA support for communication peripherals

Integrated RTOS:
- FreeRTOS v9
- RTOS-native driver wrappers

Integrated Stacks and Middleware
- USB Host, Device and OTG
- BLE stack
- Amazon Web Service IoT
- QCA WiFi Stacks
- lwIP, FatFS
- Crypto acceleration plus wolfSSL
- SD and eMMC card support

Reference Software:
- Peripheral driver usage examples
- Application demos
- FreeRTOS usage demos

License:
- BSD 3-clause for startup, drivers, USB stack

Toolchains:
- Eclipse IDE
- GCC w/ Cmake

Quality:
- Production-grade software
- MISRA 2004 compliance
- Checked with Coverity® static analysis tools
Get Software & Tools

• https://open-isa.org/downloads/

• Linux/Mac SDK:
 - rv32m1_sdk_riscv_installer.sh

• Toolchain (Prebuilt GCC and OpenOCD for Linux)
 - Toolchain_Linux.tar.gz
rv32m1_SDK folder

<sdk root directory>

- devices SOC peripheral driver source code and toolchain support code
- boards Demo source code and project files
- rtos FreeRTOS support package
- middleware Third Party middleware source code
- tools CMake supporting files
- RISCV RISCV supporting files

- Getting Started with RV32M1 SDK RISCV.pdf Getting Started Tutorial
- SW-Content-Register.txt Software Content Register File
- LA_OPT_NXP_Software_License.htm
- LA_OPT_WOLFSSL_EVAL.htm License Files
rv32m1_SDK demo applications

boards

rv32m1_vega

demo_apps out of box demos

driver_examples barematel examples for demo driver of various on-chip/on-board peripherals

rtos_examples demos in freertos context

multicore_examples rpmsg-lite based multicore examples

usb_examples various usb examples

wireless_examples

bluetooth bluetooth examples

rv32m1_ri5cy.cfg ri5cy OpenOCD config file

rv32m1_zero_riscy.cfg zero_riscy openOCD config file
STEP BY STEP USING TERMINAL
Get software and tools (already in VM image)

Download SDK and Toolchain
- curl -L https://github.com/open-isa-org/open-isa.org/releases/download/1.0.0/rv32m1_sdk_riscv_installer.sh > $HOME/rv32m1_sdk_riscv_installer.sh
- curl -L https://github.com/open-isa-org/open-isa.org/releases/download/1.0.0/Toolchain_Linux.tar.gz > $HOME/Toolchain_Linux.tar.gz

Extract SDK
- cd $HOME
- chmod +x rv32m1_sdk_riscv_installer.sh
- ./rv32m1_sdk_riscv_installer.sh
- # Accept license
- mkdir vega && cd vega
- tar xf ../rv32m1_sdk_riscv.tar.gz

Extract toolchain
- cd $HOME
- mkdir toolchain && cd toolchain
- tar xf ../Toolchain_Linux.tar.gz
- tar xf riscv32-unknown-elf-gcc.tar.gz
- rm riscv32-unknown-elf-gcc.tar.gz
- tar xf openocd.tar.gz
- rm openocd.tar.gz
Set environment variables

Set environment variables

- export RV32M1_SDK_DIR=$HOME/vega/rv32m1_sdk_riscv
- export PATH=$PATH:$HOME/toolchain
- export RISCV32GCC_DIR=$HOME/toolchain/riscv32-unknown-elf-gcc
- export PATH=$PATH:$RISCV32GCC_DIR/bin
Go to the demo application folder. Ie. hello_world:
- cd $RV32M1_SDK_DIR/boards/rv32m1_vega/demo_apps/hello_world/ri5cy/riscvgcc

Execute the script to build the application
- ./build_debug.sh

Flash the application using OpenOCD + GDB (Make sure the board is connected to PC and J-Link)
- openocd -f $HOME/vega/rv32m1_sdk_riscv/boards/rv32m1_vega/rv32m1_ri5cy.cfg

 # Open another terminal session (don’t forget to configure the env variables) or Press Ctrl+z and ‘bg’
- cd $RV32M1_SDK_DIR/boards/rv32m1_vega/demo_apps/hello_world/ri5cy/riscvgcc/debug
- riscv32-unknown-elf-gdb hello_world.elf
 (gdb) target remote localhost:3333
 (gdb) load
 (gdb) monitor reset
 (gdb) quit

Open a Serial Terminal to verify output.
Settings: Baud-rate: **115200**, Data: **8bits**, Parity: **None**, Flow Control: **None**.

![Serial Terminal Image]
Build & Run: From Eclipse

• Your VM image should already have Eclipse installed and configured, if you don’t have it, please refer to “Getting Started with RV32M1 SDK”, Chapter 4.
 - Summary:
 ▪ Make sure GNU MCU Eclipse plug-in is installed with RISCV C/C++ Cross Tools selected
 ▪ Configure Global OpenOCD Path - /home/user/toolchain
 ▪ Configure Global RISC-V Toolchains Paths - /home/user/toolchain/riscv32-unknown-elf-gcc/bin

Open eclipse
• cd $HOME/eclipse
• ./eclipse

Import an existing project. Ie, the hello_world path:
 $HOME/vega/rv32m1_sdk_riscv/boards/rv32m1_vega/demo_apps/hello_world/ri5cy/riscveclipse

Click ‘OK’ and ‘Finish’

Click the “Hammer” to build your application
Build & Run: From Eclipse (2)

- Go to Run -> Debug Configurations
- Select a debug configuration from ‘GDB OpenOCD Debugging’

- Click on ‘Debug’
- Click on ‘Resume’ or stop the debugger

- Open a serial terminal and verify the output
Now it’s your turn!

- Download NXP’s IoT Toolbox application to your smartphone. The application is available for Android and iOS.

- Load the Bluetooth Low Energy **Heart Rate Sensor** application located at:
 …/rv32m1_sdk_riscv/boards/rv32m1_vega/wireless_examples/bluetooth/heart_rate_sensor/freertos/ri5cy/

- It’s recommended to use the Eclipse-based scenario but feel free to try any setup.
 - Start the Heart Rate Sensor application, you should see the red LED blinking.
 - Open the IoT Toolbox and select the Heart Rate app
 - You should see your device being advertised
 - Select your device to start a connection
Which one is my board?

- You may see many Advertisements from different boards around you, let’s change the ADV NAME of your device to make sure you are connecting to it.
- Open the file “wireless_examples\bluetooth\heart_rate_sensor\freertos\app_config.c” in the heart_rate_sensor demo.
- In line 75, you will find the Advertising name .aData, modify this to identify your board.

 Note: the length cannot be larger than 14 including the ending character (\0).
- Don’t forget to adapt the .length variable.

```c
70 .aData = (uint8_t*)adData1
71 },
72 {
73  .adType = gAdShortenedLocalName_c,
74  // .length = 9,
75  .aData = (uint8_t*)"RV32_HRS"
76  .length = 14,
77  .aData = (uint8_t*)"RV32_MyADV123" //Max length: 14 characters including end character '\0'
78 }
79 `;
Reference

• Open-ISA.org
  - [Getting Started with RV32M1 SDK (RISCV)](ISA.org)
SECURE CONNECTIONS FOR A SMARTER WORLD