

Panel Discussion: Open Source IP – Enabling Research in Academia

- Moderator: Hugh Pollitt-Smith (CMC Microsystems)
- Mickaël Fiorentino (Polytechnique Montréal)
- Miodrag Bolic (University of Ottawa)
- Sebastian Magierowski (York University)
- Guy Lemieux (University of British Columbia)
- Vaughn Betz (University of Toronto)
- Lesley Shannon (Simon Fraser University)

- Not for profit federally incorporated 1984
- Manages Canada's National Design Network[®]
- Delivers micro-nano innovation capabilities across Canada

Academic and Industrial Users

LOWERING BARRIERS TO TECHNOLOGY ADOPTION

State-of-the-art environments for successful design

	_		/
(1	'
ſ	V	٢.)

- Selection of high-performance Computer Aided Design (CAD) tools and design environments
- Ava CN
 - Available via desktop or through CMC Cloud
 - User guides, application notes, training materials and courses

🕒 CMC.ca/CAD

Services for making working

	٠	٠		
-	٠			•
-	٠	-	٠	•
-	٠	٠	٠	•
•	٠	-	-	•

- \checkmark
 - Ø ₽
 - Fabrication and travel assistance to prototype at a university-based lab

Multi-project wafer services with

affordable access to foundries worldwide

prototypes

- Value-added packaging and assembly services
- In-house expertise for first-time-right prototypes

CMC.ca/FAB

Device validation to system demonstration

- Access to platform-based microsystems design and prototyping environments
- Access to test equipment on loan
- Access to contract engineering services

CMC.ca/LAB

© 2019 CMC Microsystems

Canada's National Design Network®

A Canada-wide collaboration between **67** universities/colleges to connect **10,000** academic participants with **1,000** companies to design, make and test micronanosystem prototypes. CMC Microsystems manages Canada's National Design Network[®].

2018 Outcomes:

3655 publications
165 awards
85 patents awarded
555 collaborations
20 new startups
785 trained HQP moved to industry

Annually:

1250 connected professors

8850 researchers on professors' teams

6200 users of computer aided design tools

360 physical prototypes

80 equipment rental items otherwise unaffordable to users

CNDN: Engaging strategically in Canada and worldwide

CMC's role with RISC-V: Path to Implementation

- Silicon-proven design platforms
- CAD tools and flows for virtual system prototyping, FPGA, ASIC implementation, verification, PCB design
- Embedded software toolchain, software stack
- FPGA platforms for emulation & validation
- Design kits, IP for fabrication in commercial technologies
- Multi-project wafer fabrication services
- Packaging & assembly services
- Access to test equipment
- Demonstration Board
- Engineering support, consulting/design services

RISC-V Accelerator Platform Initiative

CMC Cloud FPGA/GPU Cluster

CPUs, GPUs and FPGAs in pre-validated cluster to scale heterogenous computing workloads

- Machine learning training and inference (e.g. CNN for object detection, speech recognition)
- Video Processing / Transcoding, Financial Computing, Database analytics, Networking
- Quantum chemistry, molecular dynamics, climate and weather, Genomics
- RISC-V Accelerators in Open Source Cloud Computing

Cluster Hardware Cluster Configuration Alveo U200 **1** Node Specifications Nodes Config. # of Dual 12 core 2.2-to-3.0 GHz CPU nodes 192 GB RAM 1-3 2 x GPU 3 300 GB local storage -----2 x FPGA 3 4-6 100 Gb EDR node interconnect 1 x GPU 7,8 1 x FPGA 10 GbE storage network

FPGA/GPU cluster Specifications

Software stack for the FPGA/GPU cluster

© 2019 CMC Microsystems

- Mickaël Fiorentino (Polytechnique Montréal)
- Miodrag Bolic (University of Ottawa)
- Sebastian Magierowski (York University)
- Guy Lemieux (University of British Columbia)
- Vaughn Betz (University of Toronto)
- Lesley Shannon (Simon Fraser University)

With respect to Open Source HW and/or SW, describe:

- 1. What you've done in the past
- 2. What you're doing now, and
- 3. What you need from the ecosystem/community

How We Use RISC-V: Research

KeyV : A Self-Timed In-Order RISC-V Processor

https://git.cmc.ca/mickael.fiorentino/keyv.git

Principles

- Microarchitectural concepts that can lower the power consumption
- Emphasis on clocking mechanisms & instruction level parallelism

Cores – RV32IM

- KeyV: Self-Timed Core
- SynV: Baseline Synchronous Core

Implementation

- 45nm GPDK Cadence
- **65nm LP** *TSMC*

How We Use RISC-V: Teaching

https://git.cmc.ca/mickael.fiorentino/ele8304.git

Specifications

- Subset of RV32I: 25 instructions
- Basic memory model

Software

ASM Fibonacci benchmark
 riscv32-unknown-elf-gcc -00

Design flow

- RTL design VHDL-2008
- 45nm GPDK Cadence
- Simulations Modelsim
 Behavioral, post-synthesis, post-pnr

POLYTECHNIQUE MONTRÉAL

D'INGÉNIERI

- Synthesis Genus
 Timing analysis, Power analysis
- Place & Route Innovus
 DRC, LVS, STA

Microarchitecture

- 5-stages pipeline
- Basic branch prediction

Leverage The (CMC) *Ecosystem*

Toolchain

source /CMC/scripts/riscv.rv32ima.csh

Verification

- Software models
- Verification IPs (UVM, UVVM)
- Formal verification

Design reuse

 Shared library of standard building blocks (FIFOs, BUS, Cores, etc.)

Benchmarks

- Standard Cores that we can compare against
- Figure of merit: Coremark post-synthesis, 45nm GPDK ?

Open Source (*Hardware*) **Design Environment**

- Open Source PDK 45nm
- Open Source CAD Simulation, (HLS) Synthesis, Place & Route...

Training

- Online tutorials
- Webinars
- Events & Meetups

Collaboration

- git.cmc.ca
- nextcloud.cmc.ca
- matrix.cmc.ca

Open source tools in education

Miodrag Bolic

Professor

School of Electrical Engineering and Computer Science

University of Ottawa

mbolic@uottawa.ca

www.uOttawa.ca

Open source in education

- Reasons for using open source in education
 - Improving the teaching method
 - provide students experimentation resources that help them to understand abstract concepts of science and engineering.
 - Reducing costs
 - Promoting students' engagement
 - Fostering students' creativity
 - students can move from simple technology users to the more active role of makers.
- Open source in education
 - Software
 - Hardware
 - Simulators
 - Operating systems
 - Instruction Set Architectures (it is estimated that more than 500 universities will teach RISC-V courses by next year)

RISC-V in Computer System Design Course

- 3rd year undergraduate in computer engineering in 2018
- Tools: Bluespec
- Labs
 - RISC-V Multi-Cycle and Two-Stage Pipeline
 - RISC-V 6-stage Pipeline and Branch Prediction
 - RISC-V with Caches
- Material: MIT course Complex Digital Systems by Prof Arvind
- Experience
 - Assistance from MIT was amazing
 - However, there was no appropriate support for students
- Need
 - Training for graduate students in developing applications for RISC-V as well as in developing new architectures and testing them in FPGAs
 - These students will then be able to transfer they knowledge to undergraduate students

Open-source resources in my other courses

- Simulators
 - Parallel processing architectures course 4th year undergraduate
 - Multi2sim
 - Support for CPU and GPU architectures
 - Students simulated multi core CPU and GPU and ran code on the simulated platforms
 - No support
- Open Source Hardware Project
 - Parallella multi-processing board
 - Students developed software accelerators but did not really utilize the open hardware
 - Limited software, problems with debugging,
- Open source software
 - Machine learning graduate course
 - Python and Jupyter notebook for teaching
 - Open-source software approach everything is on Github

S. Magierowski, YorkU EECS

Done in Past

- FPGA Acceleration
 - embedded bioinformatics
 - DNA sequencing

- Open-source
 - RIFFA
 - Reusable Integration Framework FPGA Accelerators

- HW (code) for PCIe
- SW (API) for comms
 - fpga_send(): CPU → FPGA
 - **fpga_recv()**: CPU ← FPGA

S. Magierowski, YorkU EECS

Doing Now

- The same...
 - embedded bioinformatics
- ...but with ASICs

- Open-source
 - want this beside RISC-V

- rapid prototyping with open source hardware description
 - Chisel
 - PyMTL

S. Magierowski, YorkU EECS

What's Needed From Community?

- I/O is a big deal
 - targeting real-time apps
 - FPGA currently
 - 0.8 GB/s (full duplex)
 - easy for PCIe 2.0
 - FPGA planned
 - 3.5 GB/s
 - not as easy for PCIe 2.0
- RIFFA to 3.0 & Ultrascale+
 - PCle 4 & 5?
- FPGA SoCs
 - ARM w/i OS & AXI stream
 - tight accelerator integration

ASICs

- how to integrate ASICs with RISC-V?
 - many IP blocks
- I/O for accelerated RISC-V?
 - board design for + GB/s ?
 - northbridge
- Linux on RISC-V ASIC?
 - getting complex systems up and running
- HLS for ASICs?
 - Catapult, Stratus

Guy Lemieux Prof. @ UBC CEO @ VectorBlox

Past IP ...

- UofT (myself)
 - Scalable high-frequency counters
- VectorBlox (not open source)
 - MXP Matrix Processor
 - CNN Accelerator for MXP
 - DNN Accelerator for MXP
 - ORCA RISC-V Processor (open source)
 - Binary NN Accelerator for ORCA (not open source)
- UBC (Dr. Ameer Abdelhadi)
 - Multi-port RAM
 - Binary CAM
 - Ternary CAM

Present IP...

- More RISC-V
 - New CPU design optimized for FPGAs
 - Tools for building systems
 - Peripherals, accelerators
- Manycore array
- OpenVX acceleration system for FPGAs

Help from ecosystem/community

• RISC-V IP

- Debug/JTAG controller (lightweight) + software
- Peripheral library (PCIe endpoint + DMA scatter/gather, USB, Ethernet, UART, I2C, bus interfaces + bridges, etc)
- System tools
 - Build processor + peripherals + memory
 - Multi-vendor support (all FPGAs)
 - Simulation
 - Software "board dev kits" (header files, linker scripts, etc)
- Custom PCB fabrication as easy as FPGA design
- Contributions
 - Companies can donate \$\$\$ or time
 - Individuals can donate time (esp. support/maintenance) because it's hard for researchers

A Cautionary Tale...

5

- Selling Hardware IP is not a great business model
 - Skeptical customers
 - Escalating costs for verification/support/marketing
 - Difficult to get credible testimonials
 - Difficultly getting traction with large partners
 - Nearly every single "IP company" actually makes more money on services
- Maybe Hardware IP should be free/open?
 - Selling it isn't a valid business model anyways
- Large vendors must provide better ecosystem + support for Hardware IP (open or not)
 - Think of the "App Store", not "Frequent Flyer Miles"
 - Large vendors will always make money on hard product sales

Open Source CAD Tools & FPGA Hardware

Vaughn Betz

Professor, Dept. of ECE

NSERC/Intel Industrial Research Chair in Programmable Silicon

Faculty Affiliate, Vector Institute

vaughn@eecg.utoronto.ca

Past: Open Source FPGA CAD for Research

- VPR / VTR: Open source CAD flow for FPGAs
 - Research new architecture ideas
 - Research new CAD algorithms
 - Successfully

commercialized: became P & R engine of Quartus QUARTUSH and Intel's FPGA arch. **Exploration tool**

Present: Open Program and Generate Hardware

- Research still big focus
- Completing the stack
 - Multiple FPGA start-ups &
 Darpa POSH projects using as production CAD tools
 - Symbiflow/Google:
 programming commercial
 Lattice & Xilinx devices
 - Custom FPGA layout & bitstream generators

Image source: Grady & Anderson

Future: Open Research & Production Flow?

- Ideal: open compiler for FPGAs (gcc-like)
- Barriers
 - Closed commercial bitstreams
 - Need to reverse engineer \rightarrow slow, hard
 - Smaller vendors \rightarrow open bitstream to gain mindshare?
 - Architects / reviewers to keep tool healthy
 - Complex tools \rightarrow need architects & code reviewers
 - Always busy / graduating / in short supply
 - Can industry or research consortium fund?
 - Community building & mentoring?
 - Forking
 - Grad student: fastest way to a paper is fork code & change
 - Hobbyist: more fun & immediate results via recode everything
 - But redundant work, slower progress!
 - How to incentivize / organize work going back to trunk?

J SIMON FRASER UNIVERSITY ENGAGING THE WORLD

TAIGA RISC-V 32-bit CPU

By Lesley Shannon School of Engineering Science Simon Fraser University

Reconfigurable Computing Lab OSD Forum Panel

Past Work

- Polyblaze multicore softprocessor
 - Not open source (limited by others)
- Performance monitoring
 - Limited by not having platforms to demonstrate work on
- APIs/middleware for abstracting, scheduling and resource management of heterogeneous systems
 - Limited by not having platforms to demonstrate work on

Current Work

What we need

- Help with Verification
 - <u>Benchmarks</u>, Compliance tests, tools, frameworks, methods (formal?)
- Compiler/Synthesis tool support and Design Environments
 - Easy wrappers to integrate and use
- Credit
 - Research requires \$\$

Key Point: Researchers cannot guarantee correctness and we do not have access to the frameworks that would allow "^{Int}us to do so.