
Industry Perspectives on

Open Source Hardware IP
Verification Challenges

2019-09-17

Michael Thompson, Covrado



What is “Hardware IP”?

⚫ Hardware Intellectual Property

➢ That’s not particularly helpful…

⚫ For the purposes of today’s discussion, “Hardware IP” shall 

mean:

➢ A synthesizable (RTL) description of a functional unit.

➢ Typically has well defined interfaces that follow an industry standard 

protocol.

➢ Examples include a PCI-Express end-point, embedded microprocessor 

core or DRAM controller.



Why Use Hardware IP?

⚫ Industrial teams use Hardware IP to reduce costs:

➢ Documentation, Design, Verification, Synthesis, Place&Route and Timing 

Closure effort can all be reduced.

⚫ None of these costs can be eliminated by using Hardware IP.

⚫ Verification remains a thorny issue:

➢ How to assess the quality of the Hardware IP?

➢ Must still verify the usage of the Hardware IP within the host ASIC/FPGA.



Use of Hardware IP in Industry

⚫ Use of Hardware IP is now well established in Industry:

➢ Multiple vendors selling “silicon proven” IP.

➢ ASIC and FPGA development teams have come to trust third-party IP.

⚫ Successful teams understand that using IP reduces and changes development effort, 

it does not eliminate it.

➢ Verification issues persists.

⚫ Hardware IP vendors have learned how to support their customer’s verification:

➢ Quality Documentation.

➢ On-site support engineers.

➢ Strict control of the implementation: virtually all commercial IP is “closed source”.



Why Use Open Source Hardware IP?
⚫ Reduce Costs:

➢ This is the primary reason to use any IP, open source or not.

⚫ Take advantage of an ‘eco-system’ to reduce barriers to entry:

➢ Access to engineering talent with relevant skills.

➢ Hardware and software tools.

⚫ Ability to make custom modifications:

➢ This is unique to Open Source. 

⚫ Desire to contribute to the Open Source Community:

➢ Not a strong motivation in Industry.



Industry use of Open Source Hardware IP

⚫ Use of Open Source Hardware IP is not well established in 

Industry:

➢ This is in contrast to Open Source Software which is widely used in 

Industry.

⚫ Barriers to Adoption:

➢ Perceived poor quality documentation.

➢ Lack of direct vendor support tends to shrink the cost/benefit of using IP.

➢ Perceived low quality verification.



The Verification Problem

⚫ Its helpful to think of them as challenges, not problems.

➢ All designs have functional defects (bugs).

➢ It is impossible to know where the bugs are apriori.

➢ No known method of demonstrating that all bugs have been found.

➢ It cost more to find and fix the bugs than it does to create them.

⚫ Gotta get it right the first time.

➢ Schedule impact: an ASIC re-spin takes weeks to months.

➢ Dollar cost of an ASIC re-spin is extreme.



The Cost of Bugs

⚫ There is lots of data that 

shows software bug costs 

increase over the life-cycle.

Credit: National Institute of Standards and 

Technology

⚫ Hardware has a similar 

curve.

➢ Absolute costs of bugs are 

much higher for hardware.

➢ Cost of an ASIC re-spin can 

easily be > 10^6 dollars.



State of the Verification in Industry Today

⚫ No known method to find all bugs.

⚫ Multiple techniques are used:

➢ Simulation, emulation, prototyping, formal methods, code reviews.

⚫ Multiple techniques to measure verification completeness:

➢ Compliance test-plans, code coverage, functional coverage.



Open Source Hardware has specific Challenges

⚫ Two of the (many) reasons for the success of Open Source 

Software:

➢ The cost of finding defects is spread across a wide developer base:

⚫ How many eyeballs have looked at the source code for gcc?

➢ The cost of fixing defects is acceptable. Produces a large number 

of high-quality open 

source software projects.

⚫ Open Source Hardware is unique:

➢ Much smaller developer base.

➢ Much higher costs to fix bugs. 

Reduces the quantity and 

quality of open source 

hardware projects.



In a Nutshell
⚫ Verification is not a solved problem.

➢ An Open Source Hardware IP provider needs to recognize this and take it seriously.

⚫ The cost of defects in silicon means that Open Source Hardware IP must support 

“first time right” designs.

➢ Industrial teams demand the same quality of Open Source Hardware IP as commercially 

available (typically closed source) Hardware IP.

⚫ Open Source Hardware IP must address its unique situation and provide:

➢ Quality documentation.

➢ A support model for Open Source Hardware IP.

➢ Industrial-grade verification completion metrics. 

➢ A method for users to re-verify any IP they modify.



Are We There Yet?!?

⚫ The RISC-V community has a large set of Cores readily available:

➢ Several, including RI5CY are already in silicon.

➢ Several Industrial teams already have RISC-V based hardware available.

⚫ As far as I am aware, none of the RISC-V cores available to the Open 

Source community are fully verified and “production-ready”:

➢ RI5CY has known bugs (see GitHub Issue #132).

➢ Completeness of RISC-V verification efforts is not known:

• The above RI5CY bug is not attributed to any specific version of RI5CY!



Getting There From Here
⚫ Start with a minimal set of Open Source Hardware IP:

➢ The OpenHW Group will focus on RI5CY and Ariane cores first.

➢ Execute a ‘complete’ verification effort on these cores, fix the bugs and make the updates 

available to the community.

⚫ Verification Environment(s) should be developed with both Industry and Open Source 

requirements in mind:

➢ Use of Industrial-grade tools and methodologies.

➢ Ensure all verification code (“VIP”) is Open Source.

➢ Specific emphasis on support for user-verification and user-modification.

• Strict Configuration management and Revision Control is essential:

➢ Must have the ability to cross references issues to versions.



A RISC-V Open Source Simulation Environment

⚫ The simulation environment is written in SystemVerilog and uses the Universal 

Verification Methodology.

⚫ Constrained Random generation of Instructions using the Google Instruction 

Stream Generator:

➢ Implemented in SystemVerilog using the Universal Verification Methodology library.

➢ Search for “RISC-V Processor Verification Platform”.

⚫ Reference Model based on the Imperas Instruction Set Simulator (implemented 

in C).

⚫ Checking and functional coverage implemented in SystemVerilog.



In Place Today:

A RISC-V Hardware IP Open Source Testbench



Constrained Random Generation

⚫ The effort required to write a set of tests to fully verify a modern IP unit is prohibitive:

➢ Requires a large set of tests.

➢ Small changes to RTL will impact a large set of tests.

⚫ Current practise is to define a set of rules (constraints) that defines all legal (and illegal) 

input stimulus:

➢ Significant reduction in the number of tests to write.

➢ Small changes to RTL will impact a small set of constraints.

⚫ Constrained random generation of stimulus is well supported by multiple HDLs such as 

SystemVerilog and SystemC.



Constrained Random Instruction Generation

⚫ Not a new idea:

➢ Chen, “Applying Constrained-Random Verification to Microprocessors”, 

EDN 2007.

➢ Elms, “Verification of a Custom RISC Processor”, Synopsys User Group 

Canada 2012.

➢ Hegde, Pankaj and Das, “Random Test Program Generator for SPARC T1 

Processor”, IOSR Journal of VLSI and Signal Processing, 2015.

➢ Liu, Ho and Jonnalagadda, “UVM-based RISC-V processor verification 

platform”, RISC-V Summit 2018.
(Open Source implementation at https://github.com/google/riscv-dv)



Constrained Random Instruction Generation 101

⚫ First, define a randomizable 

“Instruction Class”:

⚫ Add constraints to define the 

rules for a legal instruction:



Other Verification Environments

⚫ Formal Verification:

➢ Top-level interfaces and internal pipeline are both candidates for 

formal methods.

➢ Again, all code for the formal environment must be written in 

SystemVerilog and will be Open Source.

⚫ Prototyping:

➢ A critical technique for system-level verification.

➢ How to publish a lab prototype as an Open Source project?



Supporting Open Source Verification

⚫ Everything on the ‘Testbench’ slide is implemented as Open 

Source code using non-proprietary languages:

➢ SystemVerilog is IEEE-1800.

➢ UVM is IEEE-1800.2

➢ C is as Open Source as it gets.

⚫ The EDA tools are proprietary...

➢ These are the tools used by Industry.

➢ The environment is not locked into any single EDA vendor’s tools.



Lots of Work Remaining...
⚫ Complete a RISC-V Compliance specification for selected Cores.

➢ Leverage the work being done by the RISC-V Foundation Compliance Task Force.

⚫ Functional Coverage model for the Compliance spec.

➢ Write it!

➢ Close it!

⚫ Integrate all components into a complete end-to-end UVM verification environment.

⚫ Prototype verification flow for User extensions.

⚫ Documentation!



Wrapping it Up

⚫ Open Source Hardware IP seems to be an idea who’s time has 

come.

⚫ To be successful, Open Source Hardware IP must address the 

concerns of Industrial development teams:

➢ Cost and Quality.

⚫ Unique Open Source Hardware IP capabilities could be game-

changing:

➢ Access to community knowledge, experience and tools.

➢ Ability to produce open or closed source variants.



Thank You! 



Background








