EEEEEEEEEEEEEEE

Industry Perspectives on

Open Source Hardware IP
Verification Challenges

Michael Thompson, Covrado

2019-09-17

What is “Hardware IP”?

. Hardware Intellectual Property

» That’s not particularly helpful...

« For the purposes of today’s discussion, “Hardware |IP” shall
mean:

» A synthesizable (RTL) description of a functional unit.

» Typically has well defined interfaces that follow an industry standard
protocol.

> Examples include a PCI-Express end-point, embedded microprocessor
core or DRAM controller.

EEEEEEEEEEEEEEE

EEEEEEEEEEEEEEEEEEEEEE M)

Why Use Hardware IP?

o Industrial teams use Hardware IP to reduce costs:

» Documentation, Design, Verification, Synthesis, Place&Route and Timing
Closure effort can all be reduced.

« None of these costs can be eliminated by using Hardware IP.

 Verification remains a thorny issue:
» How to assess the quality of the Hardware IP?
» Must still verify the usage of the Hardware IP within the host ASIC/FPGA.

EEEEEEEEEEEEEEE

< OPEN SOURCE DEVELOPER FORUM

Use of Hardware IP In Industry

« Use of Hardware IP is now well established in Industry:

» Multiple vendors selling “silicon proven” IP.

> ASIC and FPGA development teams have come to trust third-party IP.

« Successful teams understand that using IP reduces and changes development effort,
it does not eliminate it.

> Verification issues persists.

« Hardware IP vendors have learned how to support their customer’s verification:
» Quality Documentation.
» On-site support engineers.

» Strict control of the implementation: virtually all commercial IP is “closed source”.

EEEEEEEEEEEEEEE

< OPEN SOURCE DEVELOPER FORUM

Why Use Open Source Hardware IP?

« Reduce Costs:

» This is the primary reason to use any IP, open source or not.

. Take advantage of an ‘eco-system’ to reduce barriers to entry:
> Access to engineering talent with relevant skills.

» Hardware and software tools.

« Ability to make custom modifications:

> This is unique to Open Source.

« Desire to contribute to the Open Source Community:

» Not a strong motivation in Industry.

EEEEEEEEEEEEEEE

< OPEN SOURCE DEVELOPER FORUM

Industry use of Open Source Hardware IP

. Use of Open Source Hardware IP is not well established in
Industry:

» This is in contrast to Open Source Software which is widely used in
Industry.

« Barriers to Adoption:
» Perceived poor quality documentation.
» Lack of direct vendor support tends to shrink the cost/benefit of using IP.

» Perceived low quality verification.

EEEEEEEEEEEEEEE

EEEEEEEEEEEEEEEEEEEEEE M)

The Verification Problem

. Its helpful to think of them as challenges, not problems.
» All designs have functional defects (bugs).
» It is impossible to know where the bugs are apriori.
» No known method of demonstrating that all bugs have been found.
» It cost more to find and fix the bugs than it does to create them.

« Gotta get it right the first time.

» Schedule impact: an ASIC re-spin takes weeks to months.
» Dollar cost of an ASIC re-spin is extreme.

The Cost of Bugs

« There is lots of data that
shows software bug costs
Increase over the life-cycle.

Relative cost to fix bugs,
based on time of detection

A

30x

25x

20x

15x

10x

5x

Ox

. System/
Integration / Aicantance
Component Testing TesF;ing

Credit: National Institute of Standards and
EEEEEEEEEEEEEEE Technology

Requirements /
Architecture

Production /

Coding Post-release

< OPEN SOURCE DEVELOPER FORUM

Hardware has a similar
curve.

» Absolute costs of bugs are
much higher for hardware.

» Cost of an ASIC re-spin can
easily be > 1076 dollars.

State of the Verification in Industry Today

« No known method to find all bugs.

« Multiple techniques are used:

» Simulation, emulation, prototyping, formal methods, code reviews.

. Multiple techniques to measure verification completeness:
» Compliance test-plans, code coverage, functional coverage.

Open Source Hardware has specific Challenges

. Two of the (many) reasons for the success of Open Source
Software:

» The cost of finding defects is spread across a wide developer base:

. How many eyeballs have looked at the source code for gcc?
Produces a large number
of high-quality open
source software projects.

» The cost of fixing defects is acceptable.

« Open Source Hardware is unique:

» Much smaller developer base. ~ Reduces the quantity and
_ _ guality of open source
» Much higher costs to fix bugs. hardware projects.

EEEEEEEEEEEEEEE

EEEEEEEEEEEEEEEEEEEEEE M)

In a Nutshell

« Verification is not a solved problem.

» An Open Source Hardware IP provider needs to recognize this and take it seriously.

« The cost of defects in silicon means that Open Source Hardware IP must support
“first time right” designs.

> Industrial teams demand the same quality of Open Source Hardware IP as commercially
available (typically closed source) Hardware IP.

« Open Source Hardware IP must address its unique situation and provide:
» Quality documentation.
> A support model for Open Source Hardware IP.
> Industrial-grade verification completion metrics.

> A method for users to re-verify any IP they modify.

EEEEEEEEEEEEEEE

< OPEN SOURCE DEVELOPER FORUM

Are We There Yet?!?

« The RISC-V community has a large set of Cores readily available:

» Several, including RISCY are already in silicon.

> Several Industrial teams already have RISC-V based hardware available.

« As far as | am aware, none of the RISC-V cores available to the Open
Source community are fully verified and “production-ready”:

» RIS5CY has known bugs (see GitHub Issue #132).

» Completeness of RISC-V verification efforts is not known:

The above RISCY bug is not attributed to any specific version of RISCY!

EEEEEEEEEEEEEEE

< OPEN SOURCE DEVELOPER FORUM

Getting There From Here

« Start with a minimal set of Open Source Hardware IP:

» The OpenHW Group will focus on RISCY and Ariane cores first.

» Execute a ‘complete’ verification effort on these cores, fix the bugs and make the updates
available to the community.

« Verification Environment(s) should be developed with both Industry and Open Source
requirements in mind:

» Use of Industrial-grade tools and methodologies.

» Ensure all verification code (“VIP”) is Open Source.

» Specific emphasis on support for user-verification and user-modification.

« Strict Configuration management and Revision Control is essential:

» Must have the ability to cross references issues to versions.

EEEEEEEEEEEEEEE

< OPEN SOURCE DEVELOPER FORUM

A RISC-V Open Source Simulation Environment

« The simulation environment is written in SystemVerilog and uses the Universal
Verification Methodology.

« Constrained Random generation of Instructions using the Google Instruction
Stream Generator:

» Implemented in SystemVerilog using the Universal Verification Methodology library.
» Search for “RISC-V Processor Verification Platform”.

« Reference Model based on the Imperas Instruction Set Simulator (implemented
in C).

« Checking and functional coverage implemented in SystemVerilog.

EEEEEEEEEEEEEEE

< OPEN SOURCE DEVELOPER FORUM

In Place Today:
A RISC-V Hardware IP Open Source Testbench

-== metrics

RTL Simulation Metrics.log

Open Source

SystemVerilog RISC-V RTL

UVM
RISC-V
Instruction
Stream
Generator

(cpu+memory)

& memory y
Imperas ISS f
RISCV.c RISCV.elf

mperas e e

Image source: © Imperas Software Ltd

EEEEEEEEEEEEEEEEEEEEEE M)

Constrained Random Generation

« The effort required to write a set of tests to fully verify a modern IP unit is prohibitive:
> Requires a large set of tests.

» Small changes to RTL will impact a large set of tests.

« Current practise is to define a set of rules (constraints) that defines all legal (and illegal)
input stimulus:

» Significant reduction in the number of tests to write.

» Small changes to RTL will impact a small set of constraints.

« Constrained random generation of stimulus is well supported by multiple HDLs such as
SystemVerilog and SystemC.

EEEEEEEEEEEEEEE

< OPEN SOURCE DEVELOPER FORUM

Constrained Random Instruction Generation .

« Not a new idea:

>

EEEEEEEEEE

EEEEEEEEEEEEEEEEEEEE

RUM >

Chen, “Applying Constrained-Random Verification to Microprocessors”,
EDN 2007.

Elms, “Verification of a Custom RISC Processor”, Synopsys User Group
Canada 2012.

Hegde, Pankaj and Das, “Random Test Program Generator for SPARC T1
Processor”, IOSR Journal of VLSI and Signal Processing, 2015.

Liu, Ho and Jonnalagadda, “UVM-based RISC-V processor verification
platform”, RISC-V Summit 2018.

(Open Source implementation at https://github.com/google/riscv-dv)

RRRRR

Constrained Random Instruction Generation 101°

« First, define a randomizable « Add constraints to define the
“Instruction Class™ rules for a legal instruction.

class riscv_rand_instr extends riscv_instr_base;

n_config cfg;

class riscv instr base extends uvm object;

“uvm_object utils(riscv_rand instr)

rand riscv instr group t group;
rand riscv instr format t format;
rand riscv instr cateogry t category;

rand riscv instr name t instr name;
rand bit [11:6 Csr;

constraint category c {
soft category inside

constraint instr c {
me before imm;

rand riscv reg t rs2;

rand riscv re rsl;

rand riscv r rd;

rand bit [31 imm;

rand imm t imm_type;

rand bit [4:0] imm len;

rand bit is pseudo instr;
rand bit aq;

rand bit ri;

if(!cfg.enable
instr_name !

if(cfg.no_fence) {
18 SEPTEMBER 2019 e i [FENCE, EI, S

OSD

OPEN SOURCE DEVELOPER FORUM

Other Verification Environments

 Formal Verification:

» Top-level interfaces and internal pipeline are both candidates for
formal methods.

» Again, all code for the formal environment must be written in
SystemVerilog and will be Open Source.

« Prototyping:
» A critical technique for system-level verification.
» How to publish a lab prototype as an Open Source project?

Supporting Open Source Verification

« Everything on the ‘Testbench’ slide is implemented as Open
Source code using non-proprietary languages:

» SystemVerilog is IEEE-1800.
» UVM is IEEE-1800.2
» C s as Open Source as it gets.

« The EDA tools are proprietary...
» These are the tools used by Industry.
» The environment is not locked into any single EDA vendor’s tools.

Lots of Work Remaining...

Complete a RISC-V Compliance specification for selected Cores.

> Leverage the work being done by the RISC-V Foundation Compliance Task Force.

Functional Coverage model for the Compliance spec.
> Write it!

» Close it!

Integrate all components into a complete end-to-end UVM verification environment.

Prototype verification flow for User extensions.

« Documentation!

EEEEEEEEEEEEEEE

< OPEN SOURCE DEVELOPER FORUM

Wrapping it Up

« Open Source Hardware IP seems to be an idea who’s time ha
come.

S.

« To be successful, Open Source Hardware IP must address the
concerns of Industrial development teams:

» Cost and Quality.

. Unigue Open Source Hardware IP capabilities could be game-
changing:
» Access to community knowledge, experience and tools.
» Ability to produce open or closed source variants.

EEEEEEEEEEEEEEE

< OPEN SOURCE DEVELOPER FORU

EEEEEEEEEEEEEEE

< OPEN SOURCE DEVELOPER FORUM

Thank You!

Background

&
onespin

RISCY Issues
32-bit core

Hetalani Salaheddin, 4™ Sep 2019

assuring IC integrity

- &

MPP of MSTATUS CSR written wrongly onespin
Github issue #132

Page

While the core is running in U-mode

LW instruction accesses an address where reads are not allowed is executed - raises load
access fault (LAF) exception

Followed by a fetch from an address that is outside the instruction match region - raises
instruction access fault (JAF) exception

The JAF is served before the LAF and the privilege level changes to M-mode again
When the LAF is handled, all associated CSRs are updated correctly!

Except MSTATUS, where the MPP field sets the privilege to M-mode

Thus, the preceding LAF thinks it was executed in M-mode while it was in U-mode.

| Confidential | © 2019 OneSpin Solutions www.onespin.com

&
MPP of MSTATUS CSR written wrongly one;pin
Github issue #132

PRV | U mode | M mode

- - gp———
- W______E) |nstruction fetch causing an
0

EX W

e "

— -
— Privilege moves to M mode
and IAF is served
S Y/

LW instruction causing

iIn U mode
LAF is handled where MPP

of MSTATUS CSR written
with

* |AF — Instruction access fault

* LAF — Load access fault
Page | Confidential | © 2019 QOneSpin Solutions www.onespin.com

