Overview of CORE-V CVE4, CVA6 & PULP Development at ETHZ

Davide Schiavone davide@openhwgroup.org
The PULP Project

- Born in 2013 between University of Bologna and ETH Zurich

- Goal:
 - MCU with GOPS in mW power budget for Edge-Computing-Devices for the Internet-Of-Things

- How:
 - Near-Threshold-Computing and parallelization
IoT Applications and CPU Specialization

- MCU are CPU centric devices
- Edge-Computing-Devices run data-intensive algorithms
 - pattern recognition, filters, compressions
- OR10N:
 - OpenRISC ISA
 - 32b, 4-pipeline stages, in-order
 - Custom ISA extensions
 - DSP instructions
 - HW Loop
 - SIMD
 - Bit Manipulation
- Several prototypes:
 - 28nm FDSOI, UMCL 65nm
RISC-V & Open-Source

- In 2016, PULP embraces RISC-V
- RI5CY CPU as evolution of OR10N
 - Released Open-Source under SolderPad license
- PULPino:
 - Open-Source Single-Core MCU
 - Born to be a simple vehicle for the RI5CY core
- PULP GCC
 - RISC-V GCC with PULP ISA extensions
- The PULP team starts participating actively to RISC-V workshops

© OpenHW Group
RI5CY

- RV32IMF[A]CXpulp
 - RISC-V Debug

- Minimal security
 - optional U privilege modes
 - Optional PMP

- 4-stage pipeline
 - In-order issue

- 600+ MHz in GF22FDX GlobalFoundries

← Very Efficiency in data-intensive algorithms (e.g. convolution)
PULP is silicon proven

• More than 37 SoCs
• Several technologies
 • 22, 28, 40, 55, 65, 110
Open-Source Facts

- Several users started using the RI5CY core
- *Embecosm* contributes for Verilator simulation
- People wrote libraries for PULPino
 - https://github.com/misaleh/CMS IS-DSP-PULPino
- Users started reporting bugs
 - Users as companies, universities, hobbyists
- Companies built products, prototypes or evaluated the core at the industrial level
Open-Source is something serious

- RI5CY born to be integrated into PULP

- Verification for an academic Energy-Efficient design group is less important than performance for research purposes

- Open-Source nature of the core attracted companies that verified and evaluated it for us. Reporting bugs and problems on GitHub
The PULP training

- Companies and universities asked for specific « classes »
 - Theory and hands-on

- In home tutorials and Q&A
 - Targetting specif concerns

- Generic tutorial available on youtube
 - (recorded during WOSH Zurich 2019)
 - https://www.youtube.com/watch?v=27ndT6cBH0&t=3429s
The need of industrial support

The graduation day of RI5CY

• The workload to provide support to bug fixes, features requests, questions, documentation is too high for a research group
 • University does research, not products

• zero-riscy, the little brother of RI5CY moved to LowRISC to be maintained and improved

• June 2019, OpenHW Group announces that RI5CY \(\rightarrow\) CORE-V CV32E40P to be verified, improved, and silicon-proven at industrial level
OpenHW Cores Task Group

- CV32E40P is still open-source with the same permissive license
 - But now maintained at industrial quality level

- The Cores Task Group leads the decisions for the CORE-V Family
 - Every member of OpenHW is welcome to discuss with us on mattermost

- Issues, questions, pull requests on GitHub can be done by EVERYONE
 - The Cores Task Group reviews them and decides whether to accept them or not
The First Action: Verification as Priority

• CV32E40P is still open-source with the same permissive license
 • But now maintained at the industrial quality level

• Verification is not the focus of a research project and is required for an industry grade product

• OpenHW Group decided based on timeline and resources which features and parameters CV32E40P to implement based on member needs and VERIFICATION effort
 • PULP ISA Extensions kept
 • RISC-V compliant interrupts and performance counters
 • Bug fixes
 • Tandem verification with Imperas ISS
 • Security and Atomics removed, but RTL kept for future versions and forks
Coding Style Tasks

• CV32E40P changed all the file and module names to be consistent

• Code has been cleaned up and few parameters to make integration easier

• Folders have been re-organized
 • Simulation only vs. real hardware

• The old testbench became a simple example, whereas the verification activity is managed in an ad-hoc repository (core-v-verif)

• Assertions to improve verifications
RISC-V Spec Compliant Tasks

• CV32E40P changed its interrupt scheme with the RISC-V CLINT spec.

• Performance counters now RISC-V compliant

• Bug fixes to make the core compliant
RTL Coding Tasks

• CV32E40P has been updated with a new memory interface AMBA friendly (named Open Bus Interface OBI)
 • Removed combinatorial paths to improve the frequency
 • Can implement multiple out-standing transactions

• New HWLoop logic

• New Instruction Fetch stage
PULP ISA Extentions Tasks

• PULP ISA kept and under verification:
 • CV32E40P masterpiece is a custom ISA developed under the PULP project to make it highly efficient with data-intensive application

• Parametrizable for those who do not need them
 • Core not optimized for this specific case
Documentation Tasks

• RI5CY had word-based documentation
 • Not updated
 • Difficult to maintain

• CV32E40P has been uploaded with text-based documentation
 • Many fixes and updates
 • Based on Sphinx
CV32E40P RTL Freeze one-month from now

- Targeting RTL freeze in October

- Verification the most significant improvement of the core to become industrial level

- The LOOP: Verification team finds bugs in the documentation, RTL, and simulation tracer. Design team fixes them and improve the code.

- Multi OpenHW member company resources assembled in virtual teams to collaborate and create an open-source RISC-V core!
CV3240P Future

• New FPU interface
 • Standard interface based on external accelerator
 • Ideally unblocking pipeline for independent instructions (pseudo dual-issue)

• Adding back user-mode, PMP, and atomics

• Optimizations for FPGA
The need of an application class CPU

• Many applications are based on Operating Systems like Linux

• The PULP team evaluated open-source IPs, but they were based on non-industrial languages back in days

• Ariane is born. A RV64GC core running Linux!
Ariane

- RV64GC
 - RISC-V Debug

- Linux Capable
 - M, S and U privilege modes
 - TLB
 - Tightly integrated D$ and I$
 - Hardware PTW

- 6-stage pipeline
 - In-order issue
 - Out-of-order write-back
 - In-order commit

- Branch-prediction
 - RAS
 - Branch Target Buffer
 - Branch History Table

- Scoreboarding

- 1,5+ GHz in GF22FDX GlobalFoundries
CVA6: the graduation day of Ariane

• As its little brother, Ariane moved to OpenHW
 • Same need for industrial support

• Contribution of members to make it either 64 or 32b → CVA6
 • The name has no bit-width as it is configurable

• New to the family but ready to go on fire!
First top-priority CVA6 tasks

• New documentation

• Build a verification environment to host CVA6

• Review the 32b parameter pull-request
 • Big review effort but a huge benefit

• FPGA optimizations
Call to Action

• CORE-V cores NEED YOU!

• Become a member of OpenHW Group and help us build the FUTURE of OPEN-SOURCE HARDWARE

• Contact us: davide@openhwgroup.org
Thank you!