RISC-V Chip for Mobile DNA Sequencing

Sebastian Magierowski

Electrical Engineering & Computer Science Department

York University

Magierowski

Sequencing with RISC-V

Nutshell

- We're interested in ASIC for embedded molecular measurements
- We're planning a RISC-V based SoC
 - Rocket + HW accelerator for now
- Lots of Open Source stuff out there to help
 - documentation might be good
 - but we're still having a hard time working through it

• There's a "simple" way to measure some molecules

Sensing

• Getting and processing this current is difficult!

Some Fun Details

[©Oxford Nanopore Tech]

Magierowski

Small DNA Meters

- These sensors can be packaged in a small footprint
 - ~500 channels per cm²

OSDForum

Fast DNA Meters

- And they can measure a lot (per cm² of sensor area)...
 - ideally: ~0.25 human genomes / hour
 - ~25,000 coronavirus genomes / hr
 - realistically: ~2X slower
 - 1 Watt
 - \$1k (not counting chemicals!)
- And you can scale them up...
 - ~550X faster
 - 2 kWatt
 - \$285k

28,000 grams

And They Produce Lots of Data

Generate ~ 10 GB / hour
~ 3 HD NETFLIX streams

- This is handled by an external computer
 - only analog and USB comms in the box

[COxford Nanopore Tech]

- The computer isn't there just to store the measurements
 - it needs to compute

Bioinformatics in the Box

• A bunch of signal processing needs to be done on the measurements

We want that in the box

•

OSDFor

[©Oxford Nanopore Tech]

OPEN SOURCE DEVELOPER FORU

Broadened Applications

• Field genomics

Pervasive sensing

~5 yrs

~5 yrs

~15-30 yrs

centuries

[©Microsoft]

• New IT tech

Sequencing with RISC-V

Basecalling in the Box

- We want basecalling in the box
 - current-to-text conversion

Magierowski

Sequencing with RISC-V

Real-Time Basecalling

- But real-time basecalling is very compute intensive
 - HMM Basecallers
 - ~ 70 GOPS
 - 60-70% accuracy
 - DNN Basecallers
 - ~ 250 GOPS
 - 80-90% accuracy
 - e.g. heard real-time basecalling work ok on a \$25,000 machine
 - 24-core; 500-GB RAM

output layer $y^{(t)}$ hidden layer $y^{(t)}$ hidden layer $x^{(t)}$

- And power hungry
 - probably need ~2 kW to keep up with full-throttle MinIC
 - all 500 channels continuously working

Magierowski

Basecalling Algorithm

Maybe just 5G or 6G It?

• Basecall in the cloud?

- comms isn't cost/energy free
 - how will you know what to send and what not to send?
- neither is the cloud
 - \$5/hr on AWS for real-time facilities
 - ~\$40/genome
 - how many measurements before its better to invest in an embedded computer?

FPGA Basecaller

We think a basecaller ASIC has a lot of potential •

data

result

at least FPGA accelerators have looked pretty good

CPU

- 0.45 genomes / hour
- 250 MHz FPGA clock
- 6 W

RISC-V Basecaller

- We want the same in an ASIC
 - HW accelerated RISC-V

RISC-V So Far

• RV64G ISA

- 64-bit
- integer multiplication and division
- single & double precision FP
- Open source Rocket
 - from Chipyard
 - Berkeley Arch. Research
 - from Bespoke Silicon Group
 - I\$ 4 KiB; D\$ 4 KiB
 - 64 set, 4-way
- Technology
 - FD-SOI GF 22-nm
 - SSS (0.72 V) → 500 MHz
 - FFF (0.88 V) → 950 MHz

Accelerating RISC-V

• Lots of open-source help to facilitate HW acceleration

Magierowski

Open-Source Help

- RISC-V
 - but also special instructions for core/rocket commands (RoCC)
 - and means for accelerators to process those instructions

- and means for the accelerator to talk to the cache

Magierowski

Rocket Acceleration in a Bit More Detail

RISC-V Rocket acceleration scheme

Accelerated Performance

- First (very rough) impressions look good
 - at 500 MHz clock
 - 50 mW
 - 0.5 genomes / hour
 - ~ 100X more energy efficient than FPGA-accelerated
 - room for improvement?
 - running at CPI ~ 3

Rocket: Talking to the Outside World

- Open-source here too
 - System Verilog communications blocks from BSG
 - DDR source-synchronous communication off-chip

FPGA Gateway and Bridge

- Board designs available from Bespoke Silicon Group
 - 400 Mbps data rates

