

Open Source Processor IP for high-volume production SoCs

Rick O'Connor <u>rickoco@openhwgroup.org</u> T <u>@rickoco</u> T <u>@openhwgroup</u> <u>www.openhwgroup.org</u>

© OpenHW Group

OSDForum 15 Sep 2020

OPENHW[™]

- Challenges with SoC design and Open Source IP
- OpenHW Group
 - OpenHW Members & Governance
 - CORE-V Family of open source RISC-V cores
 - OpenHW Working Groups & Task Groups
- Summary

SoC Development Cost Drivers

© OpenHW Group

- Software, RTL design, Verification and Physical design account for ~90% of overall SoC development costs
- For highly differentiated IP blocks and functions, this investment is warranted
- For general purpose CPU cores an effective open-source model can drive down these development costs and increase re-use across the industry

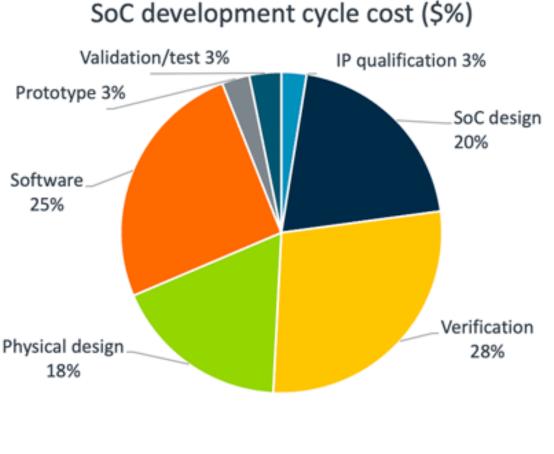


Image Source: Arm Ecosystem Blog

Barriers to adoption of Open Source HW IP

- IP quality
 - harness community best-in-class design and verification methods and contributions
- Ecosystem
 - ensure availability of IDE, RTOS / OS ports, physical design etc. and create a roadmap of cores covering a range of PPA metrics
- Permissive use
 - permissive open-source licensing and processes to minimize business and legal risks

RISC-V ISA Brings Open Source Paradigm to CPU Design

- The free and open RISC-V ISA unleashes a new frontier of processor design and innovation
- How many open source processor implementations do we need as an industry?
 - Open cores are great from a pedagogical teaching perspective, but how many is too many for widespread industry adoption?
- How does the industry, ecosystem, community organize to ensure open core success?
 - How do we establish critical mass around a handful of open cores?

Many RISC-V Open Source Cores... ...and counting.... (source: riscv.org)

Name	Maintainer	Links	User spec	License	Name	Maintainer	Links	User spec	Lice
rocket	SiFive, UCB Bar	<u>GitHub</u>	2.3-draft	BSD	Minerva	LambdaConcept	<u>GitHub</u>	RV32I	BSD
freedom	SiFive	<u>GitHub</u>	2.3-draft	BSD	OPenV/mriscv	OnChipUIS	GitHub	RV32I(?)	MIT
Berkeley Out-of- Order Machine (BOOM)	Esperanto, UCB Bar	<u>GitHub</u>	2.3-draft	BSD	VexRiscv	SpinalHDL	GitHub	RV32I[M][C]	MIT
					Roa Logic RV12	Roa Logic	<u>GitHub</u>	2.1	Non-C Licens
ORCA	VectorBlox	<u>GitHub</u>	RV32IM	BSD	SCR1	Suntanara	Citturk		Coldor
RI5CY	ETH Zurich, Università di	<u>GitHub</u>	RV32IMC	Solderpad Hardware	SCRI	Syntacore	<u>GitHub</u>	2.2, RV32I/E[MC]	Solder Hardwa License
Zero-riscy	Bologna ETH Zurich, Università di Bologna	<u>GitHub</u>	RV32IMC	License v. 0.51 Solderpad Hardware License v. 0.51	Hummingbird E200	Bob Hu	<u>GitHub</u>	2.2, RV32IMAC	Apache
					Shakti	IIT Madras	Website, GitLab	2.2 <i>,</i> RV64IMAFDC	BSD
Ariane	ETH Zurich, Università di	Website, GitHub	RV64GC	Solderpad Hardware	ReonV	Lucas Castro	<u>GitHub</u>		GPL v3
	Bologna			License v. 0.51	PicoRV32	Clifford Wolf	<u>GitHub</u>	RV32I/E[MC]	ISC
Riscy Processors	MIT CSAIL CSG	<u>Website,GitHub</u>		MIT	MR1	Tom Verbeure	<u>GitHub</u>	RV32I	Unlicer
					SERV	Olof Kindgren	<u>GitHub</u>	RV32I	ISC
RiscyOO	MIT CSAIL CSG	<u>GitHub</u>	RV64IMAFD	MIT	SweRV EH1	Western Digital Corporation	<u>GitHub</u>	RV32IMC	Apache
Lizard	Cornell CSL BRG	<u>GitHub</u>	RV64IM	BSD	Reve-R	Gavin Stark	GitHub	RV32IMAC	Apache

- DPENHW Group is a not-for-profit, global organization driven by its members and individual contributors where HW and SW designers collaborate in the development of open-source cores, related IP, tools and SW such as the CORE-V Family of open-source RISC-V cores
 - International footprint with developers in North America, Europe and Asia
 - Providing an infrastructure for hosting high quality open-source HW developments in line with industry best practices
 - Strong support from industry, academia and individual contributors with 53+ members and partners worldwide

S3+ Members & Partners

ALMA MATER STUDIORUM Università di Bologna

Barcelona Supercomputing Center Centro Nacional de Supercomputación

POLYTECHNIQUE MONTRÉAL WORLD-CLASS ENGINEERING

Partner Ecosystem 53+ Members & Partners

Legal, Accounting, Banking

NORTON ROSE FULBRIGHT

OpenHW Group Board of Directors

- Rob Oshana, NXP (Chairman)
- Charlie Hauck, Bluespec (Treasurer)
- Xiaoning Qi, Alibaba Group
- John Davis, Barcelona Supercomputing Center
- Liang Peng, Futurewei Technologies
- Alessandro Piovaccari, Silicon Labs
- Wayne Dai, VeriSilicon
- Rick O'Connor, OpenHW Group (non-voting)

© OpenHW Group

Working Groups & Task Groups

- Board appoints Chairs of ad-hoc working groups and has final approval of working group recommendations
 - Technical Working Group and Marketing Working Group will be standing working groups
- Technical Working Group
 - Cores Task Group
 - Verification Task Group
 - SW Task Group
 - HW Task Group
- Marketing Working Group
 - University Outreach Task Group
- Together with internal OpenHW Group engineering staff, member company development engineers (FTEs / ACs) establish and execute <u>OpenHW Group projects</u>

Technical Working Group (TWG)

- Co-Chairs
 - Sebastian Ahmed, Silicon Laboratories
 - Jerry Zeng, NXP Semiconductors

- Drive the overall technical direction, development roadmap and project execution for all technology related activities within the OpenHW Group and oversee the Task Groups
 - TWG is essentially the OpenHW Group company's "R&D / Engineering Organization"
- OpenHW Group engineering release methodology is based on the Eclipse Development Process
 - All OpenHW Group Platinum / Gold / Silver members are also Solutions members of the Eclipse Foundation

Cores Task Group

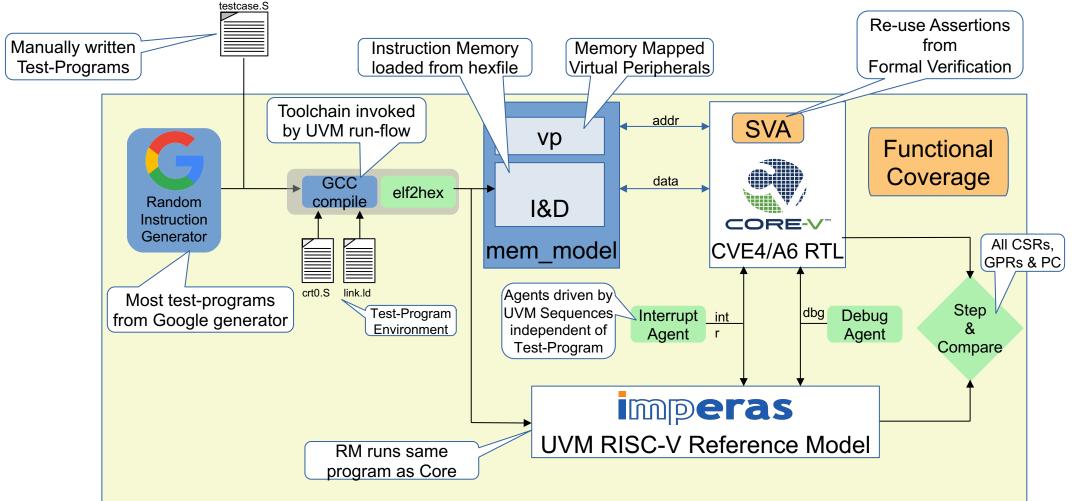
- Chair: Arjan Bink, Silicon Laboratories
- Vice-Chair: Jérôme Quévremont, Thales Research & Technology **THALES**

 Initial contribution of open source RISC-V cores from <u>ETH Zurich PULP Platform</u> and the OpenHW Group is the <u>official committer for these repositories</u>

Core	Bits/Stages	Description				
CVE4 (RI5CY)	32bit / 4-stage	A 4-stage core that implements, the RV32IMFCXpulp, has an optional 32-bit FPU supporting the F extension and instruction set extensions for DSP operations, including hardware loops, SIMD extensions, bit manipulation and post-increment instructions.				
CVA6 (Ariane)	32 & 64bit / 6-stage	A 6-stage, single issue, in-order CPU implementing RV64GC extensions with three privilege levels M, S, U to fully support a Unix-like (Linux, BSD, etc.) operating system. It has configurable size, separate TLBs, a hardware PTW and branch-prediction (branch target buffer, branch history table and a return address stack).				

Verification Task Group

• Co-Chairs:


- Leo Wang, Futurewei Technologies, Inc.
- Steve Richmond, Silicon Laboratories

• develop best in class verification test bench environments for the cores and IP blocks developed within the OpenHW Group.

CORE-V Verification Test Bench UVM Environment

make SIMULATOR=<sim> +UVM_TEST=riscv-dv-test

CORE-V

SW Task Group

- Chair: Jeremy Bennett, Embecosm
- Vice-Chair: Yunhai Shang, Alibaba T-Head

• define, develop and support SW tool chain, operating system ports and firmware for the cores and IP developed within the OpenHW Group.

HW Task Group

- Chair: Hugh Pollitt-Smith, CMC Microsystems
- Vice-Chair: Tim Saxe, QuickLogic
- define, develop and support SoC and FPGA based evaluation / development platforms for the cores and IP developed within the OpenHW Group.
- Initial project using Digilent Genesys2 FPGA boards for softcore bring up for both CV32E4 and CV64A6

What's Next? Some Predictions...

- 1. OpenHW Group ecosystem will continue to grow
 - 53 Members & Partners now expect over 60 by end of 2020
- 2. New open source RISC-V cores added to the CORE-V Family
 CV32E4 and CV64A6 now CV32E0, CV32A6 and more to come
- 3. On chip SoC interconnect (fabric & busses)
- 4. Heterogeneous clusters leveraging eFPGA

- OpenHW Group established to create a viable open source ecosystem for the semiconductor industry
 - OpenHW Group is a not-for-profit corporation
 - International footprint with developers in North America, Europe and Asia
 - Strong support from industry, academia and individual contributors
- OpenHW Group & CORE-V Family of open-source RISC-V cores
 - Proven System Verilog CV64A6 and CV32E4 core designs, processor subsystem IP blocks, verification test bench, and reference designs
 - Visit <u>www.openhwgroup.org</u> for further details
- Follow us on Social media
 - Twitter <a>@openhwgroup and <a>LinkedIn OpenHW Group

